Metals (Sep 2023)

Study on Residual Stresses of 2219 Aluminum Alloy with TIG Welding and Its Reduction by Shot Peening

  • Tao Zhang,
  • Junwen Chen,
  • Hai Gong,
  • Huigui Li

DOI
https://doi.org/10.3390/met13091581
Journal volume & issue
Vol. 13, no. 9
p. 1581

Abstract

Read online

Large residual stress of 2219 aluminum alloy induced by Tungsten Inert Gas (TIG) welding decreases its service performances. Shot peening was adopted to decrease the residual stress of TIG welding. Numerical models of TIG welding and shot peening were established using the combined discrete and finite element methods (DEM–FEM). The results show that TIG welding induces tensile residual stress due to the heat exchange effect and the longitudinal stress is larger than that in the transverse direction. The maximum tensile stress occurs at a depth of 0.1 mm. The surface tensile stress changes to compressive stress after shot peening as the severe deformation induced by the shots changes the stress state of the plate. The maximum value of compressive stress (σm) and the peened depth with compressive stress (Z0) are adopted to describe the peening effect. The absolute value of σm increases with the increased peening speed and nozzle height. Mixed shots with a diameter of 0.8 mm and 1.2 mm induce larger value of σm than those with only a diameter of 1.2 mm. The value of Z0 increases with the ascending shots diameter and nozzle height, while it varies nonmonotonically with the peening speed. The effect of shot peening on the residual stress in TIG welding is discussed.

Keywords