PLoS ONE (Jan 2016)

The Effect of Temperature Increases on an Ant-Hemiptera-Plant Interaction.

  • Katayo Sagata,
  • Heloise Gibb

DOI
https://doi.org/10.1371/journal.pone.0155131
Journal volume & issue
Vol. 11, no. 7
p. e0155131

Abstract

Read online

Global temperature increases are significantly altering species distributions and the structure of ecological communities. However, the impact of temperature increases on multi- species interactions is poorly understood. We used an ant-Hemiptera-plant interaction to examine the potential outcomes of predicted temperature increases for each partner and for the availability of honeydew, a keystone resource in many forest ecosystems. We re-created this interaction in growth cabinets using predicted mean summer temperatures for Melbourne, Australia, for the years 2011 (23°C), 2050 (25°C) and 2100 (29°C), respectively, under an unmitigated greenhouse gas emission scenario. Plant growth and ant foraging activities increased, while scale insect growth, abundance and size, honeydew standing crop per tree and harvesting by ants decreased at 29°C, relative to lower temperatures (23 and 25°C). This led to decreased scale insect infestations of plants and reduced honeydew standing crop per tree at the highest temperature. At all temperatures, honeydew standing crop was lower when ants harvested the honeydew from scale insects, but the impact of ant harvesting was particularly significant at 29°C, where combined effects of temperature and ants reduced honeydew standing crop to below detectable levels. Although temperature increases in the next 35 years will have limited effects on this system, by the end of this century, warmer temperatures may cause the availability of honeydew to decline. Decline of honeydew may have far-reaching trophic effects on honeydew and ant-mediated interactions. However, field-based studies that consider the full complexity of ecosystems may be required to elucidate these impacts.