Biogeosciences (Oct 2015)
Interpreting canopy development and physiology using a European phenology camera network at flux sites
- L. Wingate,
- J. Ogée,
- E. Cremonese,
- G. Filippa,
- T. Mizunuma,
- M. Migliavacca,
- C. Moisy,
- M. Wilkinson,
- C. Moureaux,
- G. Wohlfahrt,
- A. Hammerle,
- L. Hörtnagl,
- C. Gimeno,
- A. Porcar-Castell,
- M. Galvagno,
- T. Nakaji,
- J. Morison,
- O. Kolle,
- A. Knohl,
- W. Kutsch,
- P. Kolari,
- E. Nikinmaa,
- A. Ibrom,
- B. Gielen,
- W. Eugster,
- M. Balzarolo,
- D. Papale,
- K. Klumpp,
- B. Köstner,
- T. Grünwald,
- R. Joffre,
- J.-M. Ourcival,
- M. Hellstrom,
- A. Lindroth,
- C. George,
- B. Longdoz,
- B. Genty,
- J. Levula,
- B. Heinesch,
- M. Sprintsin,
- D. Yakir,
- T. Manise,
- D. Guyon,
- H. Ahrends,
- A. Plaza-Aguilar,
- J. H. Guan,
- J. Grace
Affiliations
- L. Wingate
- INRA, UMR ISPA 1391, 33140 Villenave d'Ornon, France
- J. Ogée
- INRA, UMR ISPA 1391, 33140 Villenave d'Ornon, France
- E. Cremonese
- Environmental Protection Agency of Aosta Valley, Climate Change Unit, ARPA Valle d'Aosta, Italy
- G. Filippa
- Environmental Protection Agency of Aosta Valley, Climate Change Unit, ARPA Valle d'Aosta, Italy
- T. Mizunuma
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
- M. Migliavacca
- Max Planck Institute for Biogeochemistry, Jena, Germany
- C. Moisy
- INRA, UMR ISPA 1391, 33140 Villenave d'Ornon, France
- M. Wilkinson
- Forest Research, Alice Holt, Farnham, GU10 4LH, UK
- C. Moureaux
- Unité de Physique des Biosystemes, Gembloux Agro-Bio Tech, Université of Liège, 5030 Gembloux, Belgium
- G. Wohlfahrt
- University of Innsbruck, Institute of Ecology, Innsbruck, Austria
- A. Hammerle
- University of Innsbruck, Institute of Ecology, Innsbruck, Austria
- L. Hörtnagl
- University of Innsbruck, Institute of Ecology, Innsbruck, Austria
- C. Gimeno
- Centro de Estudios Ambientales del Mediterráneo, Paterna, Spain
- A. Porcar-Castell
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
- M. Galvagno
- Environmental Protection Agency of Aosta Valley, Climate Change Unit, ARPA Valle d'Aosta, Italy
- T. Nakaji
- University of Hokkaido, Regional Resource Management Research, Hokkaido, Japan
- J. Morison
- Forest Research, Alice Holt, Farnham, GU10 4LH, UK
- O. Kolle
- Max Planck Institute for Biogeochemistry, Jena, Germany
- A. Knohl
- Georg-August University of Göttingen, Faculty of Forest Sciences and Forest Ecology, 37077 Göttingen, Germany
- W. Kutsch
- Johann Heinrich von Thünen-Institut (vTI) Institut für Agrarrelevante Klimaforschung, 38116, Braunschweig, Germany
- P. Kolari
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
- E. Nikinmaa
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
- A. Ibrom
- Risø National Laboratory for Sustainable Energy, Risø DTU, 4000 Roskilde, Denmark
- B. Gielen
- Department of Biology/Centre of Excellence PLECO, University of Antwerp, Antwerp, Belgium
- W. Eugster
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
- M. Balzarolo
- Department of Biology/Centre of Excellence PLECO, University of Antwerp, Antwerp, Belgium
- D. Papale
- Department of Forest Environment and Resources, University of Tuscia, Viterbo, Italy
- K. Klumpp
- INRA, Grassland Ecosystem Research Unit, UR874, 63100 Clermont Ferrand, France
- B. Köstner
- Chair of Meterorology, Technische Universität Dresden, Tharandt, Germany
- T. Grünwald
- Chair of Meterorology, Technische Universität Dresden, Tharandt, Germany
- R. Joffre
- CNRS, CEFE (UMR5175), Montpellier, France
- J.-M. Ourcival
- CNRS, CEFE (UMR5175), Montpellier, France
- M. Hellstrom
- Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
- A. Lindroth
- Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
- C. George
- Centre for Ecology and Hydrology, Wallingford, Oxford, UK
- B. Longdoz
- INRA, UMR EEF (UMR1137) Nancy, France
- B. Genty
- CEA, IBEB, SVBME, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
- J. Levula
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
- B. Heinesch
- Unité de Physique des Biosystemes, Gembloux Agro-Bio Tech, Université of Liège, 5030 Gembloux, Belgium
- M. Sprintsin
- Forest Management and GIS Department, Jewish National Fund-Keren Kayemet LeIsrael, Eshtaol, M.P. Shimshon, 99775, Israel
- D. Yakir
- Weizmann Institute for Science, Rehovot, Israel
- T. Manise
- Unité de Physique des Biosystemes, Gembloux Agro-Bio Tech, Université of Liège, 5030 Gembloux, Belgium
- D. Guyon
- INRA, UMR ISPA 1391, 33140 Villenave d'Ornon, France
- H. Ahrends
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
- A. Plaza-Aguilar
- University of Cambridge, Plant Sciences, Cambridge, UK
- J. H. Guan
- Max Planck Institute for Biogeochemistry, Jena, Germany
- J. Grace
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
- DOI
- https://doi.org/10.5194/bg-12-5995-2015
- Journal volume & issue
-
Vol. 12,
no. 20
pp. 5995 – 6015
Abstract
Plant phenological development is orchestrated through subtle changes in photoperiod, temperature, soil moisture and nutrient availability. Presently, the exact timing of plant development stages and their response to climate and management practices are crudely represented in land surface models. As visual observations of phenology are laborious, there is a need to supplement long-term observations with automated techniques such as those provided by digital repeat photography at high temporal and spatial resolution. We present the first synthesis from a growing observational network of digital cameras installed on towers across Europe above deciduous and evergreen forests, grasslands and croplands, where vegetation and atmosphere CO2 fluxes are measured continuously. Using colour indices from digital images and using piecewise regression analysis of time series, we explored whether key changes in canopy phenology could be detected automatically across different land use types in the network. The piecewise regression approach could capture the start and end of the growing season, in addition to identifying striking changes in colour signals caused by flowering and management practices such as mowing. Exploring the dates of green-up and senescence of deciduous forests extracted by the piecewise regression approach against dates estimated from visual observations, we found that these phenological events could be detected adequately (RMSE 2 flux measurements will improve our understanding of how changes in growing season length are likely to shape the capacity of European ecosystems to sequester CO2 in the future.