Buildings (Jan 2022)

Effects of the Design Parameters of Ridge Vents on Induced Buoyancy-Driven Ventilation

  • Ching-Mei Chen,
  • Yi-Pin Lin,
  • Sung-Chin Chung,
  • Chi-Ming Lai

DOI
https://doi.org/10.3390/buildings12020112
Journal volume & issue
Vol. 12, no. 2
p. 112

Abstract

Read online

With ridge vents that are commonly used in building ventilation applications as the research object, this study analyzed how design parameters affect the efficiency of thermal buoyancy-driven ventilation induced by ridge vents through computational fluid dynamics (CFD). The design parameters of ridge vents include the width S, height H, and eave overhang E. In consideration of engineering practices, the parameter ranges were set as follows: S = 1.2, 1.8, 2.4, and 3 m; H = 0.3, 0.6, 0.9, and 1.2 m; and E = 0, 0.3, and 0.6 m. The results show that when a ridge vent is under buoyancy-driven ventilation, the height H serves as the dominant design parameter. Correlation equations of the induced ventilation rates with the relevant ridge vent design parameters are provided.

Keywords