Biomedicines (Jun 2021)

Endometrial Carcinoma: Immune Microenvironment and Emerging Treatments in Immuno-Oncology

  • Sandrine Rousset-Rouviere,
  • Philippe Rochigneux,
  • Anne-Sophie Chrétien,
  • Stéphane Fattori,
  • Laurent Gorvel,
  • Magali Provansal,
  • Eric Lambaudie,
  • Daniel Olive,
  • Renaud Sabatier

DOI
https://doi.org/10.3390/biomedicines9060632
Journal volume & issue
Vol. 9, no. 6
p. 632

Abstract

Read online

Endometrial cancer (EC) can easily be cured when diagnosed at an early stage. However, advanced and metastatic EC is a common disease, affecting more than 15,000 patients per year in the United Sates. Only limited treatment options were available until recently, with a taxane–platinum combination as the gold standard in first-line setting and no efficient second-line chemotherapy or hormone therapy. EC can be split into four molecular subtypes, including hypermutated cases with POLE mutations and 25–30% harboring a microsatellite instability (MSI) phenotype with mismatch repair deficiency (dMMR). These tumors display a high load of frameshift mutations, leading to increased expression of neoantigens that can be targeted by the immune system, including (but not limited) to T-cell response. Recent data have demonstrated this impact of programmed death 1 and programmed death ligand 1 (PD-1/PD-L1) inhibitors on chemo-resistant metastatic EC. The uncontrolled KEYNOTE-158 and GARNET trials have shown high response rates with pembrolizumab and dostarlimab in chemoresistant MSI-high tumors. Most responders experiment long responses that last more than one year. Similar, encouraging results were obtained for MMR proficient (MMRp) cases treated with a combination of pembrolizumab and the angiogenesis inhibitor lenvatinib. Approvals have, thus, been obtained or are underway for EC with immune checkpoint inhibitors (ICI) used as monotherapy, and in combination with antiangiogenic agents. Combinations with other targeted therapies are under evaluation and randomized studies are ongoing to explore the impact of ICI-chemotherapy triplets in first-line setting. We summarize in this review the current knowledge of the immune environment of EC, both for MMRd and MMRp tumors. We also detail the main clinical data regarding PD-1/PD-L1 inhibitors and discuss the next steps of development for immunotherapy, including various ICI-based combinations planned to limit resistance to immunotherapy.

Keywords