Cells (Aug 2024)
Tissue- and Temporal-Dependent Dynamics of Myeloablation in Response to Gemcitabine Chemotherapy
Abstract
For triple-negative breast cancer (TNBC), the most aggressive subset of breast cancer, immune cell infiltrates have prognostic implications. The presence of myeloid-derived suppressor cells supports tumor progression, while tumor-infiltrating lymphocytes (TILs) correlate with improved survival and responsiveness to immunotherapy. Manipulating the abundance of these populations may enhance tumor immunity. Gemcitabine (GEM), a clinically employed chemotherapeutic, is reported to be systemically myeloablative, and thus it is a potentially useful adjunct therapy for promoting anti-tumor immunity. However, knowledge about the immunological effects of GEM intratumorally is limited. Thus, we directly compared the impact of systemic GEM on immune cell presence and functionality in the tumor microenvironment (TME) to its effects in the periphery. We found that GEM is not myeloablative in the TME; rather, we observed sustained, significant reductions in TILs and dendritic cells—crucial components in initiating an adaptive immune response. We also performed bulk-RNA sequencing to identify immunological alterations transcriptionally induced by GEM. While we found evidence of upregulation in the interferon-gamma (IFN-γ) response pathway, we determined that GEM-mediated growth control is not dependent on IFN-γ. Overall, our findings yield new insights into the tissue- and temporal-dependent immune ablative effects of GEM, contrasting the paradigm that this therapy is specifically myeloablative.
Keywords