Materials Research (Sep 2016)

Evaluation of Tensile Strength of a Eucalyptus grandis and Eucalyptus urophyla Hybrid in Wood Beams Bonded Together by Means of Finger Joints and Polyurethane-Based Glue

  • Marcos Cesar de Moraes Pereira,
  • Carlito Calil Neto,
  • Felipe Hideyoshi Icimoto,
  • Carlito Calil Junior

DOI
https://doi.org/10.1590/1980-5373-mr-2016-0072
Journal volume & issue
Vol. 19, no. 6
pp. 1270 – 1275

Abstract

Read online Read online

Created in the 1940s, the splice finger-joint type for wood has now been more used to compose structural materials wood base as Glued Laminated Timber (Glulam) and Cross Laminated Timber (CLT). The main advantage of this amendment is to provide a simple and economical way to join timber parts on segments. This study evaluated by means of tensile tests the capacity of this type of joint (structural dimension of 21mm) to bond together Lyptus® wood beams (a Eucalyptus grandis and Eucalyptus urophyla hybrid) using Jowat polyurethane glue (Model 680.20) as compared to similar seamless beams. The results indicate that the seamless beams are 47.72% more resistant to traction (in characteristic values) than those with finger joints. However, to form structural elements where there is redundancy overlapping parts, such as Glulam and CLT, the values obtained can be considered satisfactory. Also noted is that denser samples have better traction results due to better bonding of the densest parts. The use of finger-joint and polyurethane adhesive o bond hybrid eucalyptus, although more brittle than wood without seams, enable the use of shorter wood sections for the composition of major structural elements, optimizing better forest material.

Keywords