EPJ Web of Conferences (Jan 2020)
A Phenomenological Model of Effectively Oscillating Massless Neutrinos and Its Implications
Abstract
We discuss an alternative picture of neutrino oscillation. In this phenomenological model, the flavor-changing phenomena of massless neutrinos arise from scattering processes between neutrinos and four types of undetected spin-0 massive particles pervading throughout the Universe, instead of neutrinos’ own nature. These scattering processes are kinematically similar to Compton scattering. One type of left-handed massless sterile neutrino is needed in order to reproduce the neutrino oscillation modes predicted in the theory of neutrino mixing. Implications of our model include the existence of sterile neu- trinos, the nonconservation of active neutrinos, the possible mismatch among three neutrino mass squared differences ∆m2ij interpreted in the theory of neutrino mixing, the spacetime dependence of neutrino oscillation, and the impossibility of neutrinoless double beta decay. Several important open problems in neutrino physics become trivial or less severe in our model, such as the smallness of neutrino masses, neutrino mass hierarchy, the mechanism responsible for neutrino masses, and the Dirac/Majorana nature of neutrinos.