Food Chemistry: X (Oct 2024)
Unraveling gender-specific lipids and flavor volatiles in giant salamander (Andrias davidianus) livers via lipidomics and GC-IMS
Abstract
To uncover the relationships between lipid components and flavor volatiles, distinctness in lipid components and odor substances in giant salamander livers of different genders were comparatively characterized through UPLC-Q Exactive-MS lipidomics and gas chromatography-ion migration spectrometry (GC-IMS). A total of 2171 and 974 lipid metabolites were detected in positive and negative ion modes, respectively. Triglycerides (TG) and phosphatidylcholines (PC) are the most abundant types of lipids. TG level in male livers was higher than that in female livers (P 0.05). Additionally, a total of 51 volatile components were detected through GC-IMS. Ketones (42.18 % ∼ 45.44 %) and alcohols (24.19 % ∼ 26.50 %) were the predominant categories, and their relative contents were higher in female livers. Finally, 30 differential lipid metabolites and 12 differential odor substances were screened and could be used as distinguishing labels in giant salamander livers of different genders. Correlation analysis indicated that PS(36:2e), TG(48:13), ZyE(37:6), and ZyE(33:6) correlated positively with 3-methyl butanal, 3-hydroxy-2-butanone, and 2-methyl-1-propanol (P < 0.05), but adversely linked with 1-penten-3-one, and 1-octen-3-one (P < 0.01). By three-fold cross-validation, prediction accuracies of these differential lipids and volatile compounds for gender recognition based on random forest model were 100 % and 92 %, respectively. These findings might not only add knowledge on lipid and volatile profiles in giant salamander livers as affected by genders, but also provide clues for their gender recognition.