Scientific Reports (Aug 2021)

Real-time SARS-CoV-2 diagnostic and variants tracking over multiple candidates using nanopore DNA sequencing

  • François Stüder,
  • Jean-Louis Petit,
  • Stefan Engelen,
  • Marco Antonio Mendoza-Parra

DOI
https://doi.org/10.1038/s41598-021-95563-w
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Since December 2019, a novel coronavirus responsible for a severe acute respiratory syndrome (SARS-CoV-2) is accountable for a major pandemic situation. The emergence of the B.1.1.7 strain, as a highly transmissible variant has accelerated the world-wide interest in tracking SARS-CoV-2 variants’ occurrence. Similarly, other extremely infectious variants, were described and further others are expected to be discovered due to the long period of time on which the pandemic situation is lasting. All described SARS-CoV-2 variants present several mutations within the gene encoding the Spike protein, involved in host receptor recognition and entry into the cell. Hence, instead of sequencing the whole viral genome for variants’ tracking, herein we propose to focus on the SPIKE region to increase the number of candidate samples to screen at once; an essential aspect to accelerate diagnostics, but also variants’ emergence/progression surveillance. This proof of concept study accomplishes both at once, population-scale diagnostics and variants' tracking. This strategy relies on (1) the use of the portable MinION DNA sequencer; (2) a DNA barcoding and a SPIKE gene-centered variant’s tracking, increasing the number of candidates per assay; and (3) a real-time diagnostics and variant’s tracking monitoring thanks to our software RETIVAD. This strategy represents an optimal solution for addressing the current needs on SARS-CoV-2 progression surveillance, notably due to its affordable implementation, allowing its implantation even in remote places over the world.