Physical Review X (Nov 2017)

Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields

  • C. Abel,
  • N. J. Ayres,
  • G. Ban,
  • G. Bison,
  • K. Bodek,
  • V. Bondar,
  • M. Daum,
  • M. Fairbairn,
  • V. V. Flambaum,
  • P. Geltenbort,
  • K. Green,
  • W. C. Griffith,
  • M. van der Grinten,
  • Z. D. Grujić,
  • P. G. Harris,
  • N. Hild,
  • P. Iaydjiev,
  • S. N. Ivanov,
  • M. Kasprzak,
  • Y. Kermaidic,
  • K. Kirch,
  • H.-C. Koch,
  • S. Komposch,
  • P. A. Koss,
  • A. Kozela,
  • J. Krempel,
  • B. Lauss,
  • T. Lefort,
  • Y. Lemière,
  • D. J. E. Marsh,
  • P. Mohanmurthy,
  • A. Mtchedlishvili,
  • M. Musgrave,
  • F. M. Piegsa,
  • G. Pignol,
  • M. Rawlik,
  • D. Rebreyend,
  • D. Ries,
  • S. Roccia,
  • D. Rozpędzik,
  • P. Schmidt-Wellenburg,
  • N. Severijns,
  • D. Shiers,
  • Y. V. Stadnik,
  • A. Weis,
  • E. Wursten,
  • J. Zejma,
  • G. Zsigmond

DOI
https://doi.org/10.1103/PhysRevX.7.041034
Journal volume & issue
Vol. 7, no. 4
p. 041034

Abstract

Read online Read online

We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spin-precession frequencies of stored ultracold neutrons and ^{199}Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10^{-24}≤m_{a}≤10^{-17} eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40.