AIMS Mathematics (Feb 2022)

Jacobi forms over number fields from linear codes

  • Boran Kim,
  • Chang Heon Kim,
  • Soonhak Kwon,
  • Yeong-Wook Kwon

DOI
https://doi.org/10.3934/math.2022459
Journal volume & issue
Vol. 7, no. 5
pp. 8235 – 8249

Abstract

Read online

We suggest a Jacobi form over a number field $ \Bbb Q(\sqrt 5, i) $; for obtaining this, we use a linear code $ C $ over $ R: = \Bbb F_4+u\Bbb F_4 $, where $ u^2 = 0 $. We introduce MacWilliams identities for both complete weight enumerator and symmetrized weight enumerator in higher genus $ g\ge 1 $ of a linear code over $ R $. Finally, we give invariants via a self-dual code of even length over $ R $.

Keywords