Journal of Structural and Construction Engineering (Aug 2019)
Seismic Improvement of Concrete Gravity Dam Strengthened by Asphalt Buttressing
Abstract
In the present study, seismic analysis of concrete gravity dams strengthened by asphalt buttressing is presented for improving the seismic behavior of the Koyna dam in India subjected to Koyna ground motion. Fluid-Structure interaction is modeled including water compressibility and reservoir bottom absorption. The foundation is considered as rigid. A three-dimensional fixed smeared crack model is used to consider the nonlinear behavior of mass concrete. The analysis is carried out in the time domain by Newmark time integration scheme. Linear and nonlinear behavior of dam models subjected to horizontal and vertical components of selected record have been analysed. In order to investigate the effects of asphalt buttressing on the interface of dam and asphalt, the contact surface is defined using joint elements with a thickness of zero. The results of the analyzes confirm that the asphalt buttressing can improve the stability of the dam due to the pressure applied to the dam in counteracting the hydrostatic and hydrodynamic forces, Also the significant effect of asphalt Buttressing on the optimal distribution of stresses in the entire body of the dam as well as the prevention of stress concentration and reduction of fracture in the upper body near the dam crest show so that the crack at the lower section of the dam and at the interface of the dam and foundation is partially developed with a slower rate, and the cracking at the upper part near the crown of the dam does not spread to the upstream body of the dam and does not cause a total failure. Overall, it can be said that asphalt buttressing can improve the seismic stability of gravity dams by exerting pressure on the dam in opposition to hydrostatic and hydrodynamic loads.
Keywords