Frontiers in Cardiovascular Medicine (Apr 2023)
WGCNA and molecular docking identify hub genes for cardiac aging
Abstract
BackgroundCardiac aging and ageing-related cardiovascular diseases remain increase medical and social burden. Discovering the molecular mechanisms associated with cardiac aging is expected to provide new perspectives for delaying aging and related disease treatment.MethodsThe samples in GEO database were divided into older group and younger group based on age. Age-associated differentially expressed genes (DEGs) were identified by limma package. Gene modules significantly associated with age were mined using weighted gene co-expression network analysis (WGCNA). Protein-protein interaction networks (PPI) networks were developed using genes within modules, and topological analysis on the networks was performed to identify hub genes in cardiac aging. Pearson correlation was used to analyze the association among hub genes and immune and immune-related pathways. Molecular docking of hub genes and the anti-aging drug Sirolimus was performed to explore the potential role of hub genes in treating cardiac aging.ResultsWe found a generally negative correlation between age and immunity, with a significant negative correlation between age and b_cell_receptor_signaling_pathway, fc_gamma_r_mediated_phagocytosis, chemokine signaling pathway, t-cell receptor signaling pathway, toll_like_receptor_signaling_pathway, and jak_stat_signaling_pathway, respectively. Finally, 10 cardiac aging-related hub genes including LCP2, PTPRC, RAC2, CD48, CD68, CCR2, CCL2, IL10, CCL5 and IGF1 were identified. 10-hub genes were closely associated with age and immune-related pathways. There was a strong binding interaction between Sirolimus-CCR2. CCR2 may be a key target for Sirolimus in the treatment of cardiac aging.ConclusionThe 10 hub genes may be potential therapeutic targets for cardiac aging, and our study provided new ideas for the treatment of cardiac aging.
Keywords