Open Ceramics (Jun 2024)
Macroporous polymer-derived ceramics produced by standard and additive manufacturing methods: How the shaping technique can affect their high temperature thermal behavior
Abstract
This work proposes the processing of porous ceramic lattices via three polymer-derived ceramic routes, namely powder bed fusion and infiltration, fused filament fabrication and replica, and a direct replica of a foamed polymer. A common feature in the processing of these lattices is the use of the same polysilazane as the preceramic source for the Si-C-N-O network that builds up during ceramization.We adopted rotated cube, honeycomb and randomized cellular geometries as a matter of comparison for thermal exchange when an air flow is forced through the structures up to 1050 °C. The three procedural pathways are discussed in their limitations regarding geometry, polymer-to-ceramic conversion, high-temperature heat exchange performance and durability. In this regard, while rotated cube geometry results in the best thermal exchange and highest pressure drop, we show a correlation between chemical composition and high temperature oxidation of the Si-C-N-O network, possibly attributed to the selection of the processing routes.