E3S Web of Conferences (Jan 2018)

Development of Ti-Bi-based nanomaterials to purify mercury in the simulated flue gas

  • Guan Yu,
  • Yu Lingjie,
  • Wu Jiang,
  • Sun Xiaoming

DOI
https://doi.org/10.1051/e3sconf/20185301029
Journal volume & issue
Vol. 53
p. 01029

Abstract

Read online

The photocatalytic oxidation technology is a new technology for the oxidation treatment of Hg0 developed in the existing Wet Flue Gas Desulfurization (WFGD) equipment, in which the removal efficiency of Hg2+ is high and the removal efficiency of Hg0 is very low. When ultraviolet light (UV) is used to irradiate a substance containing TiO2 to pass the flue gas, photocatalytic catalytic oxidation reaction occurs, and Hg0 is oxidized to Hg2+, which is easily absorbed later in the WFGD apparatus, thereby improving the removal efficiency of mercury. The technology is still in the experimental development stage and needs further research. It has brought widespread interests to introduce surface defect or form interface heterostructure to improve the photocatalytic activity of the nanomaterials. The Ti-Bi-based nanomaterial photocatalyst with defect TiO2/BiOIO3 heterostructure has been fabricated via calcination method. The results showed that to introduce surface defect and form interface heterostructure on photocatalysts together can increase the response of the visible light, promoting the transfer velocity of the photocarriers and in turn suppressing the recombination of photo-generated electrons and holes, and this may become a developing trend in the near future.