Journal of International Medical Research (Jan 2021)
Layer-specific strain for assessing the effect of naringin on systolic myocardial dysfunction induced by sepsis and its underlying mechanisms
Abstract
Objective This study aimed to investigate the protective effects of naringin on myocardial deformation and oxidative responses in rats with sepsis-induced myocardial dysfunction (SIMD). Methods Global and segmental layer-specific longitudinal strain (LS) was assessed by speckle tracking echocardiography. Serum levels of creatine kinase, lactate dehydrogenase, superoxide dismutase, and malondialdehyde were measured. The activity of cleaved caspase-3 was determined by immunohistochemistry. Protein expression levels of Kelch-like ECH-related protein 1 (Keap1), nuclear erythroid factor 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were measured by western blotting. Results Naringin inhibited the lipopolysaccharide-induced decrease in global and layer-specific LS of the left ventricle. Naringin also increased superoxide dismutase expression and decreased malondialdehyde, creatine kinase, lactate dehydrogenase, and cleaved caspase-3 expression in rats with SIMD. Furthermore, naringin increased Nrf2 and HO-1 protein expression levels, and decreased Keap1 protein expression levels in rats with SIMD. Conclusion Layer-specific LS analysis of myocardial function by speckle tracking echocardiography can reflect early changes in myocardial systolic function. Naringin may possess a protective effect through moderating lipopolysaccharide-induced myocardial oxidative stress via the Keap1/Nrf2/HO-1 pathway in rats with SIMD.