Remote Sensing (Jun 2021)
MDCwFB: A Multilevel Dense Connection Network with Feedback Connections for Pansharpening
Abstract
In most practical applications of remote sensing images, high-resolution multispectral images are needed. Pansharpening aims to generate high-resolution multispectral (MS) images from the input of high spatial resolution single-band panchromatic (PAN) images and low spatial resolution multispectral images. Inspired by the remarkable results of other researchers in pansharpening based on deep learning, we propose a multilevel dense connection network with a feedback connection. Our network consists of four parts. The first part consists of two identical subnetworks to extract features from PAN and MS images. The second part is a multilevel feature fusion and recovery network, which is used to fuse images in the feature domain and to encode and decode features at different levels so that the network can fully capture different levels of information. The third part is a continuous feedback operation, which refines shallow features by feedback. The fourth part is an image reconstruction network. High-quality images are recovered by making full use of multistage decoding features through dense connections. Experiments on different satellite datasets show that our proposed method is superior to existing methods, through subjective visual evaluation and objective evaluation indicators. Compared with the results of other models, our results achieve significant gains on the multiple objective index values used to measure the spectral quality and spatial details of the generated image, namely spectral angle mapper (SAM), relative global dimensional synthesis error (ERGAS), and structural similarity (SSIM).
Keywords