Journal of Mining and Metallurgy. Section B: Metallurgy (Jan 2018)

A system of analysis and prediction of the loss of forging tool material applying artificial neural networks

  • Hawryluk M.,
  • Mrzyglod B.

DOI
https://doi.org/10.2298/JMMB180417023H
Journal volume & issue
Vol. 54, no. 3
pp. 323 – 337

Abstract

Read online

The article presents the use of artificial neural networks (ANN) to build a system of analysis and forecasting of the durability of forging tools and the process of acquiring the source knowledge necessary for the network learning process. In particular, the study focuses on the prediction of the geometrical loss of the tool material after different surface treatment variants.The methodology of developing neural network models and their quality parameters is also presented. The standard single-layer MLP networks were used here; their quality parameters are at a high level and the results presented with their participation give satisfactory results in line with technological practice. The data used in the learning process come from extensive comprehensive performance tests of forging tools operating under extreme operating conditions (cyclic mechanical and thermal loads). The parameterization of the factors important for the selected forging process was made and a database was developed, including 900 knowledge vectors, each of which provided information on the size of the geometrical loss of the tool material (explained variables). The value of wear was determined for the set values of explanatory variables such as: number of forgings, pressure, temperature on selected tool surfaces, friction path and the variant of the applied surface treatment. The results presented in the study, confirmed by expert technologists, have a clear applicational character, because based on the presented solutions, the optimal treatment can be chosen and the appropriate preventive measures applied, which will extend the service life.

Keywords