Remote Sensing (Apr 2023)

Mapping Growing Stem Volume Using Dual-Polarization GaoFen-3 SAR Images in Evergreen Coniferous Forests

  • Zilin Ye,
  • Jiangping Long,
  • Huanna Zheng,
  • Zhaohua Liu,
  • Tingchen Zhang,
  • Qingyang Wang

DOI
https://doi.org/10.3390/rs15092253
Journal volume & issue
Vol. 15, no. 9
p. 2253

Abstract

Read online

Unaffected by cloud cover and solar illumination, synthetic aperture radar (SAR) images have great capability to map forest growing stem volume (GSV) in complex biophysical environments. Up to now, c-band dual-polarization Gaofen-3 (GF-3) SAR images, acquired by the first Chinese civilian satellite equipped with multi-polarized modes, are rarely applied in mapping forest GSV. To evaluate the capability of dual-polarization GF-3 SAR images in mapping forest GSV, several proposed derived features were initially extracted by mathematical operations and applied to obtain optimal feature sets by different feature sorting methods and feature selection methods. Then, the maps of GSV in an evergreen coniferous forest were inverted by various machine learning algorithms and stacking ensemble learning methods with different strategies. The results implied that backscattering coefficients and partially proposed derived features showed high sensitivity to the forest GSV, and the saturation phenomenon also obviously occurred once the forest GSV was larger than 300 m3/ha. Furthermore, the results showed that the accuracy of the mapped GSV was significantly improved using the stacking ensemble learning methods. Using various optimal feature sets and base models (MLR, KNN, SVM, and RF), the rRMSE values mainly ranged from 30% to 40%. After using the stacking ensemble learning methods, the values of rRMSE ranged from 16.71% to 20.51%. This confirmed that dual-polarization GF-3 images have great potential to map forest GSV in evergreen coniferous forests.

Keywords