Stem Cell Research & Therapy (Jul 2019)

miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β-catenin signaling pathway

  • Xiaohui Lu,
  • Xi Chen,
  • Jing Xing,
  • Min Lian,
  • Dan Huang,
  • Yuanzhou Lu,
  • Guijuan Feng,
  • Xingmei Feng

DOI
https://doi.org/10.1186/s13287-019-1344-4
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background MicroRNAs (miRNAs) play a key role in regulating cell differentiation. In the present study, we aimed to explore the role of miR-140-5p in odontoblastic differentiation of dental pulp stem cells (DPSCs). Methods DPSCs from normal human impacted third molars were isolated and cultured. After overexpression or silencing of miR-140-5p in DPSCs, activity, proliferation, and odontoblastic differentiation of DPSCs were evaluated. The possible target gene of miR-140-5p was verified by luciferase reporter gene assay. Using gene transfection technology, RT-CPR, and Western blot to confirm miR-140-5p regulates the odontoblastic differentiation of DPSCs through Wnt1/β-catenin signaling. Results We found the expression of miR-140-5p decreased in the differentiated DPSCs for odontoblastic cells, and at the same time, the expressions of Wnt1 and β-catenin increased. Wnt1 was the target gene of miR-140-5p which was confirmed by luciferase reporter gene system. miR-140-5p overexpression suppressed the expression of Wnt1. miR-140-5p inhibitor could promote the odontoblastic differentiation of DPSCs. miR-140-5p mimic could weaken the odontoblastic differentiation of DPSCs, which could be reversed by the overexpression of Wnt1. Conclusion Our data demonstrated that miR-140-5p regulates the odontoblastic differentiation of DPSCs via targeting Wnt1/β-catenin signaling. Therefore, miR-140-5p might be a molecular target to regulate the odontoblastic differentiation for the therapeutic agents in dental medicine.

Keywords