Communications Chemistry (Jun 2023)

Silver/chiral pyrrolidinopyridine relay catalytic cycloisomerization/(2 + 3) cycloadditions of enynamides to asymmetrically synthesize bispirocyclopentenes as PDE1B inhibitors

  • Jing Jiang,
  • Jin Zhou,
  • Yang Li,
  • Cheng Peng,
  • Gu He,
  • Wei Huang,
  • Gu Zhan,
  • Bo Han

DOI
https://doi.org/10.1038/s42004-023-00921-6
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Significant progress has been made in asymmetric synthesis through the use of transition metal catalysts combined with Lewis bases. However, the use of a dual catalytic system involving 4-aminopyridine and transition metal has received little attention. Here we show a metal/Lewis base relay catalytic system featuring silver acetate and a modified chiral pyrrolidinopyridine (PPY). It was successfully applied in the cycloisomerization/(2 + 3) cycloaddition reaction of enynamides. Bispirocyclopentene pyrazolone products could be efficiently synthesized in a stereoselective and economical manner (up to >19:1 dr, 99.5:0.5 er). Transformations of the product could access stereodivergent diastereoisomers and densely functionalized polycyclic derivatives. Mechanistic studies illustrated the relay catalytic model and the origin of the uncommon chemoselectivity. In subsequent bioassays, the products containing a privileged drug-like scaffold exhibited isoform-selective phosphodiesterase 1 (PDE1) inhibitory activity in vitro. The optimal lead compound displayed a good therapeutic effect for ameliorating pulmonary fibrosis via inhibiting PDE1 in vivo.