Molecules (Mar 2020)
Beyond the Simple Copper(II) Coordination Chemistry with Quinaldinate and Secondary Amines
Abstract
Copper(II) acetate has reacted in methanol with quinaldinic acid (quinoline-2-carboxylic acid) to form [Cu(quin)2(CH3OH)]∙CH3OH (1) (quin− = an anionic form of the acid) with quinaldinates bound in a bidentate chelating manner. In the air, complex 1 gives off methanol and binds water. The conversion was monitored by IR spectroscopy. The aqua complex has shown a facile substitution chemistry with alicyclic secondary amines, pyrrolidine (pyro), and morpholine (morph). trans-[Cu(quin)2(pyro)2] (2) and trans-[Cu(quin)2(morph)2] (4) were obtained in good yields. The morpholine system has produced a by-product, trans-[Cu(en)2(H2O)2](morphCOO)2 (5) (morphCOO− = morphylcarbamate), a result of the copper(II) quinaldinate reaction with ethylenediamine (en), an inherent impurity in morpholine, and the amine reaction with carbon dioxide. (pyroH)[Cu(quin)2Cl] (3) forms on the recrystallization of [Cu(quin)2(pyro)2] from dichloromethane, confirming a reaction between amine and the solvent. Similarly, a homologous amine, piperidine (pipe), and dichloromethane produced (pipeH)[Cu(quin)2Cl] (11). The piperidine system has afforded both mono- and bis-amine complexes, [Cu(quin)2(pipe)] (6) and trans-[Cu(quin)2(pipe)2] (7). The latter also exists in solvated forms, [Cu(quin)2(pipe)2]∙CH3CN (8) and [Cu(quin)2(pipe)2]∙CH3CH2CN (9). Interestingly, only the piperidine system has experienced a reduction of copper(II). The involvement of amine in the reduction was undoubtedly confirmed by identification of a polycyclic piperidine compound 10, 6,13-di(piperidin-1-yl)dodecahydro-2H,6H-7,14-methanodipyrido[1,2-a:1′,2′-e][1,5]diazocine.
Keywords