Fishes (Jun 2023)
Non-Linear Analyses of Fish Behaviours in Response to Aquatic Environmental Pollutants—A Review
Abstract
Analysis of fish behaviour is an effective way to indirectly identify the presence of environmental pollutants that negatively affect fish life, its production and quality. Monitoring individual and collective behaviours produces large amounts of non-linear data that require tailor-suited computational methods to interpret and manage the information. Fractal dimension (FD) and entropy are two groups of such non-linear analysing methods that serve as indicators of the complexity (FD) and predictability (entropy) of the behaviours. Since behavioural complexity and predictability may be modulated by contaminants, the changes in its FD and entropy values have a clear potential to be embedded in a biological early warning system (BEWS), which may be particularly useful in Precision Fish Farming settings and to monitor wild populations. This work presents a review of the effects of a wide range of environmental contaminants, including toxic compounds, cleaning and disinfecting agents, stimulant (caffeine), anaesthetics and antibiotics, heavy metals (lead, cupper, and mercury), selenium, pesticides and persistent environmental pollutants, on the FD and entropy values of collective and individual behavioural responses of different fish species. All the revised studies demonstrate the usefulness of both FD and entropy to indicate the presence of pollutants and underline the need to consider early changes in the trend of the evolution of their values prior to them becoming significantly different from the control values, i.e., while it is still possible to identify the contaminant and preserve the health and integrity of the fish.
Keywords