Symmetry (Mar 2020)

Combining Multiple Biometric Traits Using Asymmetric Aggregation Operators for Improved Person Recognition

  • Abderrahmane Herbadji,
  • Zahid Akhtar,
  • Kamran Siddique,
  • Noubeil Guermat,
  • Lahcene Ziet,
  • Mohamed Cheniti,
  • Khan Muhammad

DOI
https://doi.org/10.3390/sym12030444
Journal volume & issue
Vol. 12, no. 3
p. 444

Abstract

Read online

Biometrics is a scientific technology to recognize a person using their physical, behavior or chemical attributes. Biometrics is nowadays widely being used in several daily applications ranging from smart device user authentication to border crossing. A system that uses a single source of biometric information (e.g., single fingerprint) to recognize people is known as unimodal or unibiometrics system. Whereas, the system that consolidates data from multiple biometric sources of information (e.g., face and fingerprint) is called multimodal or multibiometrics system. Multibiometrics systems can alleviate the error rates and some inherent weaknesses of unibiometrics systems. Therefore, we present, in this study, a novel score level fusion-based scheme for multibiometric user recognition system. The proposed framework is hinged on Asymmetric Aggregation Operators (Asym-AOs). In particular, Asym-AOs are estimated via the generator functions of triangular norms (t-norms). The extensive set of experiments using seven publicly available benchmark databases, namely, National Institute of Standards and Technology (NIST)-Face, NIST-Multimodal, IIT Delhi Palmprint V1, IIT Delhi Ear, Hong Kong PolyU Contactless Hand Dorsal Images, Mobile Biometry (MOBIO) face, and Visible light mobile Ocular Biometric (VISOB) iPhone Day Light Ocular Mobile databases have been reported to show efficacy of the proposed scheme. The experimental results demonstrate that Asym-AOs based score fusion schemes not only are able to increase authentication rates compared to existing score level fusion methods (e.g., min, max, t-norms, symmetric-sum) but also is computationally fast.

Keywords