Remote Sensing (Jun 2024)

Lossy Compression of Single-channel Noisy Images by Modern Coders

  • Sergii Kryvenko,
  • Vladimir Lukin,
  • Benoit Vozel

DOI
https://doi.org/10.3390/rs16122093
Journal volume & issue
Vol. 16, no. 12
p. 2093

Abstract

Read online

Lossy compression of remote-sensing images is a typical stage in their processing chain. In design or selection of methods for lossy compression, it is commonly assumed that images are noise-free. Meanwhile, there are many practical situations where an image or a set of its components are noisy. This fact needs to be taken into account since noise presence leads to specific effects in lossy compressed data. The main effect is the possible existence of the optimal operation point (OOP) shown for JPEG, JPEG2000, some coders based on the discrete cosine transform (DCT), and the better portable graphics (BPG) encoder. However, the performance of such modern coders as AVIF and HEIF with application to noisy images has not been studied yet. In this paper, analysis is carried out for the case of additive white Gaussian noise. We demonstrate that OOP can exist for AVIF and HEIF and the performance characteristics in it are quite similar to those for the BPG encoder. OOP exists with a higher probability for images of simpler structure and/or high-intensity noise, and this takes place according to different metrics including visual quality ones. The problems of providing lossy compression by AVIF or HEIF are shown and an initial solution is proposed. Examples for test and real-life remote-sensing images are presented.

Keywords