Insects (Jun 2024)

Prediction of Potential Distribution of <i>Carposina coreana</i> in China under the Current and Future Climate Change

  • Guolei Zhang,
  • Sai Liu,
  • Changqing Xu,
  • Hongshuang Wei,
  • Kun Guo,
  • Rong Xu,
  • Haili Qiao,
  • Pengfei Lu

DOI
https://doi.org/10.3390/insects15060411
Journal volume & issue
Vol. 15, no. 6
p. 411

Abstract

Read online

Carposina coreana is an important pest of Cornus officinalis, distributed in China, Korea, and Japan. In recent years, its damage to C. officinalis has become increasingly serious, causing enormous economic losses in China. This study and prediction of current and future suitable habitats for C. coreana in China can provide an important reference for the monitoring, early warning, prevention, and control of the pest. In this study, the potential distributions of C. coreana in China under current climate and future climate models were predicted using the maximum entropy (MaxEnt) model with ArcGIS software. The distribution point data of C. coreana were screened using the buffer screening method. Nineteen environmental variables were screened using the knife-cut method and variable correlation analysis. The parameters of the MaxEnt model were optimized using the kuenm package in R software. The MaxEnt model, combined with key environmental variables, was used to predict the distribution range of the suitable area for C. coreana under the current (1971–2000) and four future scenarios. The buffer screening method screened data from 41 distribution points that could be used for modeling. The main factors affecting the distribution of C. coreana were precipitation in the driest month (Bio14), precipitation in the warmest quarter (Bio18), precipitation in the coldest quarter (Bio19), the standard deviation of seasonal variation of temperature (Bio4), minimum temperature in the coldest month (Bio6), and average temperature in the coldest quarter (Bio11). The feature class (FC) after the kuenm package optimization was a Q-quadratic T-threshold combination, and the regularization multiplier (RM) was 0.8. The suitable areas for C. coreana under the current climate model were mainly distributed in central China, and the highly suitable areas were distributed in southern Shaanxi, southwestern Henan, and northwestern Hubei. The lowest temperature in the coldest month (Bio6), the average temperature in the coldest quarter (Bio11), and the precipitation in the warmest quarter (Bio18) all had good predictive ability. In future climate scenarios, the boundary of the suitable area for C. coreana in China is expected to shift northward, and thus, most of the future climate scenarios would shift northward.

Keywords