BMC Microbiology (Jan 2003)

Characterization of the nodulation plasmid encoded chemoreceptor gene <it>mcpG </it>from <it>Rhizobium leguminosarum</it>

  • Del Bel Kate L,
  • Clark Kirsten T,
  • Yost Christopher K,
  • Hynes Michael F

DOI
https://doi.org/10.1186/1471-2180-3-1
Journal volume & issue
Vol. 3, no. 1
p. 1

Abstract

Read online

Abstract Background In general, chemotaxis in Rhizobium has not been well characterized. Methyl accepting chemotaxis proteins are sensory proteins important in chemotaxis of numerous bacteria, but their involvement in Rhizobium chemotaxis is unclear and merits further investigation. Results A putative methyl accepting chemotaxis protein gene (mcpG) of Rhizobium leguminosarum VF39SM was isolated and characterized. The gene was found to reside on the nodulation plasmid, pRleVF39d. The predicted mcpG ORF displayed motifs common to known methyl-accepting chemotaxis proteins, such as two transmembrane domains and high homology to the conserved methylation and signaling domains of well-characterized MCPs. Phenotypic analysis of mcpG mutants using swarm plates did not identify ligands for this putative receptor. Additionally, gene knockouts of mcpG did not affect a mutant strain's ability to compete for nodulation with the wild type. Notably, mcpG was found to be plasmid-encoded in all strains of R. leguminosarum and R. etli examined, though it was found on the nodulation plasmid only in a minority of strains. Conclusions Based on sequence homology R. leguminosarum mcpG gene codes for a methyl accepting chemotaxis protein. The gene is plasmid localized in numerous Rhizobium spp. Although localized to the sym plasmid of VF39SM mcpG does not appear to participate in early nodulation events. A ligand for McpG remains to be found. Apparent McpG orthologs appear in a diverse range of proteobacteria. Identification and characterization of mcpG adds to the family of mcp genes already identified in this organism.