GMS Medizinische Informatik, Biometrie und Epidemiologie (Jul 2023)

Integration of heterogeneous medical and biological data with electronic personal health records

  • Savoska, Snezana,
  • Ristevski, Blagoj,
  • Blazheska-Tabakovska, Natasha,
  • Jolevski, Ilija,
  • Bocevska, Andrijana,
  • Trajkovik, Vladimir

DOI
https://doi.org/10.3205/mibe000240
Journal volume & issue
Vol. 19
p. Doc01

Abstract

Read online

The shortage of data for patients with chronic and other diseases and previous medical treatments shows significant weakness in the diagnosis and treatment of patients. Due to the healthcare system insufficiency, patients with comorbidities might not survive the diseases, especially when the disease is novel. The lack of information on patients’ genetic disorders, especially when they are unaware of them, also contributes to increased patient deaths. This conveys the necessity to integrate medical and health data with various biological omics and other data, especially in pandemic circumstances. Patients’ health data matters are apparent, but they are stored in multiple hospitals and health systems such as electronic health records (EHRs), healthcare institutions, and laboratories. Furthermore, biological data are often not integrated and cannot be used by patients, physicians, and specialists to treat particular diseases. Although the urgent need for healthcare and medical data integration is apparent, personal data protection regulations are severe. They do not allow much progress in the area without implementing security and privacy standards for patient healthcare data. One solution for this issue is setting a personal health record (PHR) as an integrative system for the patient. Many ontological frameworks have been proposed to unify the record formats, but none of them is accepted as a healthcare standard. The efforts toward approving the Health Level Seven (HL7) standards and the common medical coding systems ensure further data integration. Some efforts are made to associate particular diseases with data obtained from external environmental sensors that measure disease-associated data. Using these data, which are called exposome, the increasing symptoms of particular diseases influenced by external factors can be clarified. This paper suggests a cloud-based model for integrating healthcare and medical data from different sources such as EHRs, health information systems, and measurement sensors into the PHR as the first stage toward integrating patient health data. Besides the patients’ personal and clinical data, various omics data should be integrated for improved individualized disease prognosis and treatment of the patients. These data are stored in the cloud following the required data security and privacy standards.

Keywords