Journal of Physiological Anthropology (Jun 2012)
Distinct responses of cones and melanopsin-expressing retinal ganglion cells in the human electroretinogram
Abstract
Abstract Background The discovery of the novel photoreceptor, melanopsin-expressing retinal ganglion cells (mRGCs), has raised researchers’ interest in photoreceptive tasks performed by the mRGC, especially in non-image-forming visual functions. In a prior study, we investigated the mRGC response to light stimuli independent of rods and cones with the four-primary illumination system, which modulates stimulus levels to the mRGC and cones independently, and mRGC baseline responses were recorded in the electroretinogram (ERG). Methods In the present study, we used the same illumination system to compare independent responses of the mRGC and cones in five subjects (mean ± SD age, 23.0 ± 1.7 years). The ERG waveforms were examined as direct measurements of responses of the mRGCs and cones to stimulation (250 msec). Implicit times (the time taken to peaks) and peak values from 30 stimuli given to each subject were analyzed. Results Two distinct positive peaks appeared in the mRGC response, approximately 80 msec after the onset of the stimuli and 30 msec after their offset, while no such peaks appeared in the cone response. The response to the mRGC stimulus was significantly higher than that to the cone stimulus at approximately 80 msec (P P = 0.08). Conclusions Implicit time of the first peak was much longer than that to the b-wave and this delay might reflect mRGC’s sluggish responses. This is the first report of amplitudes and implicit time in the ERG from the response of the mRGC that is independent of rods and cones, and obtained using the four-primary illumination system.
Keywords