Frontiers in Marine Science (Jan 2023)

Comparing spatial patterns of marine vessels between vessel-tracking data and satellite imagery

  • Shinnosuke Nakayama,
  • WenXin Dong,
  • Richard G. Correro,
  • Elizabeth R. Selig,
  • Colette C.C. Wabnitz,
  • Colette C.C. Wabnitz,
  • Trevor J. Hastie,
  • Trevor J. Hastie,
  • Jim Leape,
  • Serena Yeung,
  • Fiorenza Micheli,
  • Fiorenza Micheli,
  • Fiorenza Micheli

DOI
https://doi.org/10.3389/fmars.2022.1076775
Journal volume & issue
Vol. 9

Abstract

Read online

Monitoring marine use is essential to effective management but is extremely challenging, particularly where capacity and resources are limited. To overcome these limitations, satellite imagery has emerged as a promising tool for monitoring marine vessel activities that are difficult to observe through publicly available vessel-tracking data. However, the broader use of satellite imagery is hindered by the lack of a clear understanding of where and when it would bring novel information to existing vessel-tracking data. Here, we outline an analytical framework to (1) automatically detect marine vessels in optical satellite imagery using deep learning and (2) statistically contrast geospatial distributions of vessels with the vessel-tracking data. As a proof of concept, we applied our framework to the coastal regions of Peru, where vessels without the Automatic Information System (AIS) are prevalent. Quantifying differences in spatial information between disparate datasets—satellite imagery and vessel-tracking data—offers insight into the biases of each dataset and the potential for additional knowledge through data integration. Our study lays the foundation for understanding how satellite imagery can complement existing vessel-tracking data to improve marine oversight and due diligence.

Keywords