Engineering (Apr 2022)

Engineering Sodium Metal Anode with Sodiophilic Bismuthide Penetration for Dendrite-Free and High-Rate Sodium-Ion Battery

  • Wanyu Zhao,
  • Min Guo,
  • Zhijun Zuo,
  • Xiaoli Zhao,
  • Huanglin Dou,
  • Yijie Zhang,
  • Shiying Li,
  • Zichen Wu,
  • Yayun Shi,
  • Zifeng Ma,
  • Xiaowei Yang

Journal volume & issue
Vol. 11
pp. 87 – 94

Abstract

Read online

Sodium (Na) metal batteries with a high volumetric energy density that can be operated at high rates are highly desirable. However, an uneven Na-ion migration in bulk Na anodes leads to localized deposition/dissolution of sodium during high-rate plating/stripping behaviors, followed by severe dendrite growth and loose stacking. Herein, we engineer the Na hybrid anode with sodiophilic Na3Bi-penetration to develop the abundant phase-boundary ionic transport channels. Compared to intrinsic Na, the reduced adsorption energy and ion-diffusion barrier on Na3Bi ensure even Na+ nucleation and rapid Na+ migration within the hybrid electrode, leading to uniform deposition and dissolution at high current densities. Furthermore, the bismuthide enables compact Na deposition within the sodiophilic framework during cycling, thus favoring a high volumetric capacity. Consequently, the obtained anode was endowed with a high current density (up to 5 mA∙cm−2), high areal capacity (up to 5 mA∙h∙cm−2), and long-term cycling stability (up to 2800 h at 2 mA∙cm−2).

Keywords