Journal of Fuzzy Extension and Applications (Jun 2022)
Fermatean fuzzy modified composite relation and its application in pattern recognition
Abstract
Fermatean Fuzzy Sets (FFSs) provide an effective way to handle uncertainty and vagueness by expanding the scope of membership and Non-Membership Degrees (NMDs) of Intuitionistic Fuzzy Set (IFS) and Pythagorean Fuzzy Set (PFS), respectively. FFS handles uncertain information more easily in the process of decision making. The concept of composite relation is an operational information measure for decision making. This study establishes Fermatean fuzzy composite relation based on max-average rule to enhance the viability of FFSs in machine learning via soft computing approach. Some numerical illustrations are provided to show the merit of the proposed max-average approach over existing the max-min-max computational process. To demonstrate the application of the approach, we discuss some pattern recognition problems of building materials and mineral fields with the aid of the Fermatean fuzzy modified composite relation and Fermatean fuzzy max-min-max approach to underscore comparative analyses. In recap, the objectives of the paper include: 1) discussion of FFS and its composite relations, 2) numerical demonstration of Fermatean fuzzy composite relations, 3) establishment of a decision application framework under FFS in pattern recognition cases, and 4) comparative analyses to showcase the merit of the new approach of Fermatean fuzzy composite relation. In future, this Fermatean fuzzy modified composite relation could be studied in different environments like picture fuzzy sets, spherical fuzzy sets, and so on.
Keywords