Biomedicines (Dec 2022)

Potential Inhibitors of SARS-CoV-2 Main Protease (M<sup>pro</sup>) Identified from the Library of FDA-Approved Drugs Using Molecular Docking Studies

  • Dipesh Kumar Verma,
  • Srajan Kapoor,
  • Satyajeet Das,
  • Krishan Gopal Thakur

DOI
https://doi.org/10.3390/biomedicines11010085
Journal volume & issue
Vol. 11, no. 1
p. 85

Abstract

Read online

The Corona Virus Infectious Disease-2019 (COVID-19) outbreak originated at Wuhan, China, in December 2019. It has already spread rapidly and caused more than 6.5 million deaths worldwide. Its causal agent is a beta-coronavirus named SARS-CoV-2. Many efforts have already been made to develop new vaccines and drugs against these viruses, but over time, it has changed its molecular nature and evolved into more lethal variants, such as Delta and Omicron. These will lead us to target its more-conserved proteins. The sequences’ BLAST and crystal structure of the main protease Mpro suggest a high sequence and structural conservation. Mpro is responsible for the proteolytic maturation of the polyprotein essential for the viral replication and transcription, which makes it an important drug target. Discovery of new drug molecules may take years before getting to the clinics. So, considering urgency, we performed molecular docking studies using FDA-approved drugs to identify molecules that could potentially bind to the substrate-binding site and inhibit SARS-CoV-2’s main protease (Mpro). We used the Glide module in the Schrödinger software suite to perform molecular docking studies, followed by MM-GBSA-based energy calculations to score the hit molecules. Molecular docking and manual analysis suggest that several drugs may bind and potentially inhibit Mpro. We also performed molecular simulations studies for selected compounds to evaluate protein–drug interactions. Considering bioavailability, lesser toxicity, and route of administration, some of the top-ranked drugs, including lumefantrine (antimalarial), dipyridamole (coronary vasodilator), dihydroergotamine (used for treating migraine), hexoprenaline (anti asthmatic), riboflavin (vitamin B2), and pantethine (vitamin B5) may be taken forward for further in vitro and in vivo experiments to investigate their therapeutic potential.

Keywords