Nature Communications (Sep 2019)

Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers

  • Hatice U. Osmanbeyoglu,
  • Fumiko Shimizu,
  • Angela Rynne-Vidal,
  • Direna Alonso-Curbelo,
  • Hsuan-An Chen,
  • Hannah Y. Wen,
  • Tsz-Lun Yeung,
  • Petar Jelinic,
  • Pedram Razavi,
  • Scott W. Lowe,
  • Samuel C. Mok,
  • Gabriela Chiosis,
  • Douglas A. Levine,
  • Christina S. Leslie

DOI
https://doi.org/10.1038/s41467-019-12291-6
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 12

Abstract

Read online

Epigenomic data on chromatin accessibility and transcription factor occupancy can reveal enhancer landscapes in cancer. Here, the authors develop a computational strategy called PSIONIC (patient-specific inference of networks informed by chromatin) to model the impact of enhancers on transcriptional programs in gynecologic and basal breast cancers.