Energies (Feb 2021)
Collapse of <i>n</i> Point Vortices, Formation of the Vortex Sheets and Transport of Passive Markers
Abstract
In this paper, the motion of the n-vortex system as it collapses to a point in finite time is studied. The motion of vortices is described by the set of ordinary differential equations that we are able to solve analytically. The explicit formula for the solution demands the initial location of collapsing vortices. To find the collapsing locations of vortices, the algebraic, nonlinear system of equations was built. The solution of that algebraic system was obtained using Newton’s procedure. A good initial iterate needs to be provided to succeed in the application of Newton’s procedure. An unconstrained Leverber–Marquart optimization procedure was used to find such a good initial iterate. The numerical studies were conducted, and numerical evidence was presented that if in a collapsing system n=50 point vortices include a few vortices with much greater intensities than the others in the set, the vortices with weaker intensities organize themselves onto the vortex sheet. The collapsing locations depend on the value of the Hamiltonian. By changing the Hamiltonian values in a specific interval, the collapsing curves can be obtained. All points on the collapse curves with the same Hamiltonian value represent one collapsing system of vortices. To show the properties of vortex sheets created by vortices, the passive tracers were used. Advection of tracers by the velocity induced by vortices was calculated by solving the proper differential equations. The vortex sheets are an impermeable barrier to inward and outward fluxes of tracers. Arising vortex structures are able to transport the passive tracers. In this paper, several examples showing the diversity of collapsing structures with the vortex sheet are presented. The collapsing phenomenon of many vortices, their ability to self organize and the transportation of the passive tracers are novelties in the context of point vortex dynamics.
Keywords