Iranica Journal of Energy and Environment (Jul 2024)
An MILP Formulation for Energy Scheduling of Self-sufficient Smart Home Considering Household Appliances, and Investigating Its Energy Behavior
Abstract
The electric energy demand has been increasing, following digitalization and development of urbanization, which has led to functional enhancement of home energy management system (HEMS) and its subsystems. A great amount of the produced electricity is used for household loads, whereas self-sufficient smart homes can supply all or a large portion of their electricity consumption by using renewable energy resources. In this study, an MILP model is formulated for energy scheduling on a 24-hour time horizon, to achieve the optimal performance of each home appliance for minimizing the smart home energy bill. The studied smart home can exchange electrical energy with the upstream network. A sensitivity analysis has been performed to show the impact of the changes in scheduling and energy prices on the electricity energy bill. The impact of the presence of renewable resources and electrical storage is studied on the electricity energy bill and the electrical energy sales profit of the house in different scenarios. Numerical results show that using the proposed model in the self-sufficient smart home reduces the amount of power purchased from the grid by 45%, transfers energy to the grid at some hours, and the energy bill is reduced by 65%.
Keywords