Scientific Reports (Jun 2021)
Comparison of the fertility of tumor suppressor gene-deficient C57BL/6 mouse strains reveals stable reproductive aging and novel pleiotropic gene
Abstract
Abstract Tumor suppressor genes are involved in maintaining genome integrity during reproduction (e.g., meiosis). Thus, deleterious alleles in tumor suppressor-deficient mice would exhibit higher mortality during the perinatal period. A recent aging model proposes that perinatal mortality and age-related deleterious changes might define lifespan. This study aimed to quantitatively understand the relationship between reproduction and lifespan using three established tumor suppressor gene (p53, APC, and RECQL4)-deficient mouse strains with the same C57BL/6 background. Transgenic mice delivered slightly reduced numbers of 1st pups than wild-type mice [ratio: 0.81–0.93 (p = 0.1–0.61)] during a similar delivery period, which suggest that the tumor suppressor gene-deficient mice undergo relatively stable reproduction. However, the transgenic 1st pups died within a few days after birth, resulting in a further reduction in litter size at 3 weeks after delivery compared with that of wild-type mice [ratio: 0.35–0.68 (p = 0.034–0.24)] without sex differences, although the lifespan was variable. Unexpectedly, the significance of reproductive reduction in transgenic mice was decreased at the 2nd or later delivery. Because mice are easily affected by environmental factors, our data underscore the importance of defining reproductive ability through experiments on aging-related reproduction that can reveal a trade-off between fecundity and aging and identify RECQL4 as a novel pleiotropic gene.