Materials (Feb 2022)

Effect on Microstructure and Mechanical Properties of Microwave-Assisted Sintered H13 Steel Powder with Different Vanadium Contents

  • Xuebin Chen,
  • Lei Zhao,
  • Min Wei,
  • Danqi Huang,
  • Liwu Jiang,
  • Haizhou Wang

DOI
https://doi.org/10.3390/ma15041273
Journal volume & issue
Vol. 15, no. 4
p. 1273

Abstract

Read online

The present work demonstrated the first-ever preparation of block specimens by the microwave sintering of H13 alloy powder. Varying proportions of vanadium powder (1.5%, 2.5%, 3.5%, 4.5%, and 5.5% on a mass basis) were added to H13 mold steel and these mixtures were sintered using microwaves. X-ray fluorescence spectroscopy was employed to determine the compositions of the resulting specimens and vanadium percentages of 1.56%, 2.04%, 3.10%, 4.06%, and 4.20% were determined. These results demonstrate a clear trend, with significantly lower vanadium amounts than expected based on the nominal values at higher vanadium loadings. Different samples were also found to exhibit different degrees of ablation, and this effect was related to the presence of voids in the materials. The surface compositions of these specimens were examined by laser-induced breakdown spectroscopy and were found to be relatively uniform. The microstructures as well as the hardness properties of the materials were assessed. Microwave sintering of 100 g specimens at 1300 °C for 10-min generated samples with hardness values ranging from 205 HV (at the lowest vanadium content) to 175.2 HV (at the highest vanadium content). The wear behavior of samples prepared by microwave sintering H13 die steel with different vanadium contents at room temperature has been studied. The results showed that 1.5% vanadium content is the best mass ratio.

Keywords