Quantum (Nov 2023)

A rapidly mixing Markov chain from any gapped quantum many-body system

  • Sergey Bravyi,
  • Giuseppe Carleo,
  • David Gosset,
  • Yinchen Liu

DOI
https://doi.org/10.22331/q-2023-11-07-1173
Journal volume & issue
Vol. 7
p. 1173

Abstract

Read online

We consider the computational task of sampling a bit string $x$ from a distribution $\pi(x)=|\langle x|\psi\rangle|^2$, where $\psi$ is the unique ground state of a local Hamiltonian $H$. Our main result describes a direct link between the inverse spectral gap of $H$ and the mixing time of an associated continuous-time Markov Chain with steady state $\pi$. The Markov Chain can be implemented efficiently whenever ratios of ground state amplitudes $\langle y|\psi\rangle/\langle x|\psi\rangle$ are efficiently computable, the spectral gap of $H$ is at least inverse polynomial in the system size, and the starting state of the chain satisfies a mild technical condition that can be efficiently checked. This extends a previously known relationship between sign-problem free Hamiltonians and Markov chains. The tool which enables this generalization is the so-called fixed-node Hamiltonian construction, previously used in Quantum Monte Carlo simulations to address the fermionic sign problem. We implement the proposed sampling algorithm numerically and use it to sample from the ground state of Haldane-Shastry Hamiltonian with up to 56 qubits. We observe empirically that our Markov chain based on the fixed-node Hamiltonian mixes more rapidly than the standard Metropolis-Hastings Markov chain.