HortTechnology (Nov 2021)

Characterizing the Phytotoxic Effects of Hydrogen Peroxide Root Dips on Hybrid Phalaenopsis Orchid Plants

  • Renata Goossen,
  • Kimberly A. Williams

DOI
https://doi.org/10.21273/HORTTECH04923-21
Journal volume & issue
Vol. 31, no. 6
pp. 810 – 816

Abstract

Read online

Hydrogen peroxide (H2O2) is a well-known oxidizing agent often used as a remedy by consumers to treat algae and root decay from presumed root disease on interior plants, as well as to encourage root growth and health. To characterize the phytotoxic effects and define the safe concentration threshold for H2O2 use on ‘Vivaldi’ hybrid phalaenopsis orchid (hybrid Phalaenopsis), root systems were dipped for 3 minutes in 0%, 3%, 6%, or 12% H2O2 one time and observed in greenhouse conditions for the following 27 days. Root systems of each plant were assessed over time for percent visible root damage; ratings of root health on a scale of 1 to 5 points, with 5 points indicating “very healthy”; and final fresh and dry weights. To determine when symptoms manifested above the root zone, foliage and flower damage was evaluated over time by assessing percent visible foliage damage, ratings of foliage health, percent foliar wilt, flower/bud count, and final foliage and flower fresh and dry weights. Over the evaluation period, the root health rating of the ‘Vivaldi’ hybrid phalaenopsis orchids treated with 12% H2O2 decreased from 5 to 1.13, whereas those treated with 3% H2O2 only decreased from 5 to 4.13. H2O2 concentrations of 6% and 12% damaged root health permanently, whereas the 3% H2O2 concentration only caused minor damage to overall root health. However, algae were not killed at the 3% rate. Neither foliage nor flowers were seriously affected during the 3 weeks after application, but foliage wilt did result in the 6% and 12% treatments by week 4. As H2O2 concentration increased, fresh weights decreased in roots and leaves. Although a single 3% H2O2 root dip did not result in severe symptoms of phytotoxicity, the treatment’s long-term plant health effects are unknown. Because the 3% H2O2 root dip caused minor plant health setbacks and failed to subdue algae populations in the root zone, consumers should be wary of using H2O2 to improve orchid (Orchidaceae) root health and should instead focus on altering care and watering practices.

Keywords