Energies (Apr 2023)

Practical Approach to Underground Distribution Power Cable Fleet Management

  • Pranav Pattabi,
  • Ali Naderian Jahromi,
  • Shanon Lo,
  • Kurtis Martin-Sturmey,
  • Nirvaan Bhagwandass

DOI
https://doi.org/10.3390/en16083526
Journal volume & issue
Vol. 16, no. 8
p. 3526

Abstract

Read online

With the growing requirements imposed by regulatory authorities, grid operators and power utilities firms are confronted with the challenging task of ensuring the reliability, safety, and resilience of distribution networks amid aging asset infrastructure and a lack of resources. Over the past 15 years, the health index (HI)-based analysis has become an increasingly popular asset management tool for several power utilities. This strongly focuses on HI-based analysis to consider not only factors such as the cable vintage, type, and operating conditions, but also maintenance testing data. In this regard, the best industry practices for cable maintenance testing, including VLF Tan-Delta, partial discharge (PD), and time domain reflectometry (TDR), are outlined. Moreover, online tests, such as infrared thermography, ultrasonic PD scan, and temperature monitoring, are discussed. This paper also summarizes the classic asset management strategies for underground (UG) distribution power cables. The paper offers a practical approach for cable fleet management based on authors’ experience dealing with distribution power utility cable management for North American power utilities firms in the past 10 years. The proposed approach ensures reliable cable management at the lowest total life cycle cost. The topic of fleet management for UG power cables considering various condition parameters and an overall risk assessment is outlined. The fleet management guideline of UG power cables covers both cables and their accessories, such as terminations and joints. The main contributions of the paper are to: (1) determine the key parameters and testing factors for condition assessment of cables; (2) offer a practical approach to cable management that is not only based on technical issues, but also considers risk and impact costs, such as financial impact, reliability impact, etc.; and (3) propose a methodology for translating the HI/calculated risks into GIS, making it possible to identify major degradation patterns for fleet assessment. Considering budget and resource limitations around testing UG cable installations, this paper aims to assist asset managers, engineers, and asset owners in developing an effective cable fleet management strategy.

Keywords