Scientific Reports (Sep 2021)
Rapid identification of wood species using XRF and neural network machine learning
Abstract
Abstract An innovative approach for the rapid identification of wood species is presented. By combining X-ray fluorescence spectrometry with convolutional neural network machine learning, 48 different wood specimens were clearly differentiated and identified with a 99% accuracy. Wood species identification is imperative to assess illegally logged and transported lumber. Alternative options for identification can be time consuming and require some level of sampling. This non-invasive technique offers a viable, cost-effective alternative to rapidly and accurately identify timber in efforts to support environmental protection laws and regulations.