Diagnostics (Feb 2023)

Boosting the Performance of Artificial Intelligence-Driven Models in Predicting COVID-19 Mortality in Ethiopia

  • Kedir Hussein Abegaz,
  • İlker Etikan

DOI
https://doi.org/10.3390/diagnostics13040658
Journal volume & issue
Vol. 13, no. 4
p. 658

Abstract

Read online

Like other nations around the world, Ethiopia has suffered negative effects from COVID-19. The objective of this study was to predict COVID-19 mortality using Artificial Intelligence (AI)-driven models. Two-year daily recorded data related to COVID-19 were trained and tested to predict mortality using machine learning algorithms. Normalization of features, sensitivity analysis for feature selection, modelling of AI-driven models, and comparing the boosting model with single AI-driven models were the main activities performed in this study. Prediction of COVID-19 mortality was conducted using a combination of four dominant feature variables, and hence, the best determination of coefficient (DC) of AdaBoost, KNN, ANN-6, and SVM in the prediction process were 0.9422, 0.8618, 0.8629, and 0.7171, respectively. The Boosting model improved the performance of the individual AI-driven models KNN, SVM, and ANN-6 by 7.94, 22.51, and 8.02 percent, respectively, at the verification stage using the testing dataset. This suggests that the boosting model has the best performance for prediction of COVID-19 mortality in Ethiopia. As a result, it suggests a promising potential performance of boosting ensemble model to be applied in predicting mortality and cases from similarly recorded daily data to predict mortality due to COVID-19 in other parts of the world.

Keywords