Genome Biology (Apr 2023)

The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles

  • Jacob Schreiber,
  • Carles Boix,
  • Jin wook Lee,
  • Hongyang Li,
  • Yuanfang Guan,
  • Chun-Chieh Chang,
  • Jen-Chien Chang,
  • Alex Hawkins-Hooker,
  • Bernhard Schölkopf,
  • Gabriele Schweikert,
  • Mateo Rojas Carulla,
  • Arif Canakoglu,
  • Francesco Guzzo,
  • Luca Nanni,
  • Marco Masseroli,
  • Mark James Carman,
  • Pietro Pinoli,
  • Chenyang Hong,
  • Kevin Y. Yip,
  • Jeffrey P. Spence,
  • Sanjit Singh Batra,
  • Yun S. Song,
  • Shaun Mahony,
  • Zheng Zhang,
  • Wuwei Tan,
  • Yang Shen,
  • Yuanfei Sun,
  • Minyi Shi,
  • Jessika Adrian,
  • Richard Sandstrom,
  • Nina Farrell,
  • Jessica Halow,
  • Kristen Lee,
  • Lixia Jiang,
  • Xinqiong Yang,
  • Charles Epstein,
  • J. Seth Strattan,
  • Bradley Bernstein,
  • Michael Snyder,
  • Manolis Kellis,
  • William Stafford,
  • Anshul Kundaje,
  • ENCODE Imputation Challenge Participants

DOI
https://doi.org/10.1186/s13059-023-02915-y
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 22

Abstract

Read online

Abstract A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.