Toxins (Jan 2024)
In Vitro Assessment of Ozone-Treated Deoxynivalenol by Measuring Cytotoxicity and Wheat Quality
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin, could lead to cytotoxicity in both animal bodies and plant seed cells. Ozone degradation technology has been applied to DON control. However, the safety and quality of the contaminated grain after DON degradation are largely obscured. In this work, we evaluated the cytotoxicity of ozone-treated DON through seed germination experiments and cytotoxicity tests. Cell experiments showed that the inhibition rate of HepG2 viability gradually increased within the concentrations of 1–10 mg/L of DON, alongside which an IC50 (half maximal inhibitory concentration) of 9.1 mg/L was determined. In contrast, degrading DON had no significant inhibitory effect on cell growth. Moreover, a 1–10 mg/L concentration of DON increased production of a large amount of reactive oxygen radicals in HepG2, with obvious fluorescence color development. However, fluorescence intensity decreased after DON degradation. Further, DON at a concentration of >1 mg/L significantly inhibited the germination of mung bean seeds, whereas no significant inhibition of their germination or growth were observed if DON degraded. Changes in total protein content, fatty acid value, and starch content were insignificant in wheat samples suffering ozone degradation, compared to the untreated group. Lastly, the ozone-treated wheat samples exhibited higher tenacity and whiteness. Together, our study indicated that the toxicity of DON-contaminated wheat was significantly reduced after ozone degradation.
Keywords