Atmosphere (Aug 2024)

The Implementation of Cloud and Vertical Velocity Relocation/Cycling System in the Vortex Initialization of the HAFS

  • JungHoon Shin,
  • Zhan Zhang,
  • Bin Liu,
  • Yonghui Weng,
  • Qingfu Liu,
  • Avichal Mehra,
  • Vijay Tallapragada

DOI
https://doi.org/10.3390/atmos15081006
Journal volume & issue
Vol. 15, no. 8
p. 1006

Abstract

Read online

The first version operational Hurricane Analysis and Forecast System (HAFS) implemented the Vortex Initialization (VI) technique to optimize tropical cyclone structure and intensity, which was adopted from the Hurricane Weather Research and Forecasting system (HWRF) and does not initialize cloud hydrometeors and vertical velocity. This limitation in the VI caused the inconsistency issue between hurricane vortex and its cloud in the model initial condition. A new VI, which can relocate or cycle cloud hydrometeors and vertical velocity, has been developed to solve this issue. For the cold start, the VI simply relocates the cloud and vertical velocity fields of Global Forecasting System (GFS) analysis; for the warm start, the cloud and vertical velocity associated with a hurricane in the GFS analysis are replaced by the fields extracted from the 6 h HAFS forecast of a previous cycle. This new VI has been tested for the 2023 HAFS-A real-time experiment configuration, and another sensitivity experiment without relocating or cycling both cloud and vertical velocity is conducted to examine the effect of the new VI. A comparison of the results reveals that the new VI improves the intensity forecast and generates a very realistic initial cloud field in correct position. Validating the model initial conditions with observed radar data reveals that the new VI captures the secondary eyewall of major hurricanes and asymmetric convective structure of weak tropical storms. This improvement of the cloud field in the model initial condition through the new VI expects to provide a better background for further data assimilation. Additional sensitivity experiment that only relocates or cycles cloud hydrometeors without correcting the vertical velocity field results in poorer intensity forecasts, which highlights the importance of vertical velocity in the model initial condition.

Keywords