Ceramics (Sep 2023)
Metal Halide Perovskite Light-Emitting Transistor with Tunable Emission Based on Electrically Doped Semiconductor Nanocrystal-Based Microcavities
Abstract
Electroluminescence of metal halide perovskites has been widely reported via the fabrication and optimization of light-emitting diodes and light-emitting transistors. Light-emitting transistors are particularly interesting owing to the additional control of the gate voltage on the electroluminescence. In this work, the design of a microcavity, with a defect mode that can be tuned with an applied voltage, integrated with a metal halide light-emitting transistor is shown. The optical properties of the device have been simulated with the transfer matrix method, considering the wavelength-dependent refractive indexes of all the employed materials. The tunability of the microcavity has been obtained via the employment of doped semiconductor nanocrystalline films, which show a tunable plasma frequency and, thus, a tunable refractive index as a function of the applied voltage. Consequently, the tunability of the electroluminescence of the metal halide perovskite light-emitting transistor has been demonstrated.
Keywords