Cancers (Oct 2022)

Radiogenomic System for Non-Invasive Identification of Multiple Actionable Mutations and PD-L1 Expression in Non-Small Cell Lung Cancer Based on CT Images

  • Jun Shao,
  • Jiechao Ma,
  • Shu Zhang,
  • Jingwei Li,
  • Hesen Dai,
  • Shufan Liang,
  • Yizhou Yu,
  • Weimin Li,
  • Chengdi Wang

DOI
https://doi.org/10.3390/cancers14194823
Journal volume & issue
Vol. 14, no. 19
p. 4823

Abstract

Read online

Purpose: Personalized treatments such as targeted therapy and immunotherapy have revolutionized the predominantly therapeutic paradigm for non-small cell lung cancer (NSCLC). However, these treatment decisions require the determination of targetable genomic and molecular alterations through invasive genetic or immunohistochemistry (IHC) tests. Numerous previous studies have demonstrated that artificial intelligence can accurately predict the single-gene status of tumors based on radiologic imaging, but few studies have achieved the simultaneous evaluation of multiple genes to reflect more realistic clinical scenarios. Methods: We proposed a multi-label multi-task deep learning (MMDL) system for non-invasively predicting actionable NSCLC mutations and PD-L1 expression utilizing routinely acquired computed tomography (CT) images. This radiogenomic system integrated transformer-based deep learning features and radiomic features of CT volumes from 1096 NSCLC patients based on next-generation sequencing (NGS) and IHC tests. Results: For each task cohort, we randomly split the corresponding dataset into training (80%), validation (10%), and testing (10%) subsets. The area under the receiver operating characteristic curves (AUCs) of the MMDL system achieved 0.862 (95% confidence interval (CI), 0.758–0.969) for discrimination of a panel of 8 mutated genes, including EGFR, ALK, ERBB2, BRAF, MET, ROS1, RET and KRAS, 0.856 (95% CI, 0.663–0.948) for identification of a 10-molecular status panel (previous 8 genes plus TP53 and PD-L1); and 0.868 (95% CI, 0.641–0.972) for classifying EGFR / PD-L1 subtype, respectively. Conclusions: To the best of our knowledge, this study is the first deep learning system to simultaneously analyze 10 molecular expressions, which might be utilized as an assistive tool in conjunction with or in lieu of ancillary testing to support precision treatment options.

Keywords