Arquivo Brasileiro de Medicina Veterinária e Zootecnia (Aug 2016)
Serum concentrations of acute phase proteins and immunoglobulins of calves with rotavirus diarrhea
Abstract
ABSTRACT The aim of the present study was to characterize changes in acute phase protein levels according to the occurrence of rotavirus diarrhea in calves in the first month of life. Blood and fecal samples were taken before colostrum intake and at 1, 2, 7, 15, 21 and 30 days of age from 24 Holstein calves allotted in three experimental groups: calves that did not present diarrhea (group A), calves that presented diarrhea, but tested negative for rotavirus in feces (group B), and calves that presented diarrhea and tested positive for rotavirus in feces (group C) (experiment 1). When the animals presented episodes of diarrhea, blood and fecal samples were taken at 24-hour intervals until the end of clinical signs (experiment 2). Serum proteins were separated by SDS-PAGE technique and rotavirus in feces was detected by PAGE. Data of experiment 1 were analyzed by ANOVA and Tukey's test, considered significant at P<0.05. Data of experiment 2 were subjected to the HSD test. Total protein, globulins, and IgG concentrations were lower in group C than in groups A and B. Ceruloplasmin and transferrin levels were higher in group C than in groups A and B. Serum concentrations of haptoglobin and α1-acid glycoprotein did not differ significantly between groups throughout the experimental period. Calves presented diarrhea between 10.4 and 14.6 days of age in group B, and between 10.3 and 14.6 days of age in group C. In the moments of diarrhea manifestation, least square means of IgA, haptoglobin and α1-acid glycoprotein concentrations did not differ significantly between groups B and C, but ceruloplasmin and transferrin concentrations were higher in group C than in group B, as opposed to what occurred with IgG levels. These findings show that optimizing passive immunity transfer of immunoglobulins decrease the likelihood of calves developing diarrhea caused by rotavirus. In addition, ceruloplasmin presents characteristics of a biomarker of rotavirus infection in calves.
Keywords